
1. Companies like Tesla currently use advanced decision-making models to create 
self-driving cars, which could save millions of lives. The AI for the Snake game 
models the AI in self-driving cars using deep reinforcement learning (DRL).

2. In the Snake game, the AI learns to navigate the grid to eat apples without 
crashing. This fundamental DRL approach is similar to how self-driving car 
algorithms learn to navigate roads, avoid obstacles, and reach destinations 
safely.

3. The Snake game requires the AI to make decisions with incomplete information 
and anticipate future scenarios. Similarly, self-driving cars must predict the 
actions of other road users and make decisions that minimize risk.

4. By working with deep reinforcement learning in the Snake game, AI researchers 
like me can learn skills for AI decision making, model optimization, and image 
processing with just a single home computer, turning the problem of 
self-driving cars from impossible to easily accessible.

5. AI researchers should use clever reward functions to improve performance, such 
as how the Non-trap function greatly impacted the snake model with only a few 
lines of code. This technique also reduces energy usage because we can train 
models for far less time — this is essential because machine learning already uses 
more energy than the country of Ireland, and it will keep on rising rapidly in the 
future.

1. To monitor the training process, I used a helpful tool called TensorBoard. 
TensorBoard allowed me to see the progress of the trainings in graphs. In this project, 
the length and reward of each model over the training episodes were recorded.

2. TensorBoard also let me select the models to display on the graph, allowing me to see 
how the improvement of different models compared to each other. I could check 
the data from each model to see what needed to be changed. Using TensorBoard, I 
was able to see the immense difference between my first CNN model all the way to my 
refined Non-trap reward designs.

3. After models are trained, tests are run using each model. I exported the result data 
for each model, including average reward, score, and max score count.

4. I implemented a histogram function (Figure 6) that recorded stats from test runs and 
turned them into an easy-to-read bar graph.

1. The first model I used was the CNN with 3 reward functions — getting food, staying 
alive, and moving towards food. The CNN is effective because it can see several steps 
into the future and therefore knows how to find open paths to the food. But eventually, 
it would get stuck or turn the wrong way.

2. The most important change to improve the model was the Non-trap reward function 
— this function made sure that the AI’s snake head always has direct access to most 
of the remaining empty tiles on the board, or the model would be penalized. This 
simple change was incredibly effective and eventually brought the AI’s success 
rate from 0% to over 90% after properly tuning the reward function.

3. Definition of the non-trap award function.

4. The most tedious process was fine-tuning the parameters. After making a new reward 
function that was very successful, I needed to optimize it such that it was the perfect 
value between risky and cautious, so I tried more than 50 different models. Instead of 
training models from scratch, I could also load and refine models for maximum 
optimization.

DRL — Deep Reinforcement Learning is a type of machine learning that is primarily 
based on trial and error. This type of machine learning helps the AI model optimize 
itself by giving it reward functions to aim for, and those reward functions are all 
directed toward a goal.

CNN — A Convolutional Neural Network is a type of neural network that processes 
images. It has many different layers and non-linearities, mainly used to simplify, learn 
the main features of, and classify images. CNNs process visual information from the 
game, enabling the system to interpret and react to its surroundings, much like a 
self-driving car would in the real world.

Snake Game — The classic game of Snake is quite simple. The player controls a 
snake that can turn in the cardinal directions (but not backwards), and tries to eat as 
many apples as it can without crashing into a wall or its own body. Each time an 
apple is eaten, it spawns in a new random unoccupied spot. If there is no more room 
for apples to spawn, the game is won. In this project, the board is 12x12, allowing 
the snake to reach a max size of 144.

1. Learn how to use Stable Baselines 3, which is a deep reinforcement learning 
package in Python that is built on top of the OpenAI Gym package.

2. Code an interface between OpenAI Gym and my custom Snake game that allows the 
trained AI to play the Snake game.

3. Program reward functions and train a neural network to play the Snake game by using 
the MaskablePPO class in Stable Baselines 3.

4. Save the trained network and test the results by having the AI play the Snake game, 
recording the average total reward that the AI achieves.

5. Review the AI’s gameplay and attempt to improve the model based on the mistakes 
made.

6. Add statistics for test runs and tweak the necessary values until a completely 
optimized model has been produced.

● Driving a car is one of the most dangerous things people do every day, as over 6 
million car crashes occur in the US every year. The high rate of accidents 
highlights the urgent need for safer driving practices.

● One promising solution for road safety is the development of self-driving cars, a 
recent technology using complex artificial intelligence (AI). Equipped with 
sensors and AI algorithms, self-driving cars can make quick, safe decisions on the 
road, offering the possibility of accident-free roads.

● This project dives into a simplified model of a self-driving car — the classic Snake 
game. By navigating the game's challenges, the project demonstrates the process 
of evaluating and responding to dynamic environments, similar to the 
decision-making required for real-world driving.

● Inspired by the real machine learning models used in self-driving cars, this project 
utilizes deep reinforcement learning (DRL) and convolutional neural 
networks (CNNs) to solve the complex decision-making tasks in the Snake 
game. This is the exact same type of AI that is used in self-driving cars, but small 
enough to run on a single home computer.
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1. These graphs show the trend in the behavior of the models shown. Models like 
the CNN are inconsistent and often are limited to a certain score, meanwhile the 
Non-trap models are very consistent after a certain threshold. 

2. This project highlights the significance of analyzing the effects of various 
parameters during training and identifying the optimal approach that leads to a 
snowball of positive results. With a decent model and a great reward function, the 
challenge of the Snake game transitioned from being seemingly unbeatable to 
easily manageable.
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1. Develop a deep reinforcement learning model that can excel at the Snake game.

2. Optimize the learning algorithm for efficiency and performance in the game.

3. Learn how to use reinforcement learning for AI decision making, as applied to 
algorithms for self-driving cars.
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Figure 1. Structural diagram of 
Deep Reinforcement Learning
From IEEE Access: “Investigation on Works and 
Military Applications of Artificial Intelligence”

Figure 2. Illustration of 
accessible vs non-accessible 
area by snake head. The black 
area is accessible, the gray 
area is non-accessible.

Figure 3. Non-trap award 
function.

Figure 4. The episode length (left) and episode reward (right) 
in the training process.

Figure 5. The learning rate schedule (left) and episode 
clip fraction (right) in the training process.

Figure 6. The histogram comparison of three different agents. 

Red — The starting CNN model with a 0% finish rate and average score of 470.

Green — The model implemented with Non-trap reward with a 78.5% finish rate 
and average score of 1260.

Blue — Start with the green model, re-trained with a different learning rate 
schedule and greater weight factor for Non-trap reward, this model achieved a 
93.3% finish rate and average score of 1340.
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Figure 7. Comparison of three agents, each runs 1000 tests.
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